

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

v0.0.0

	empty package skeleton

	release to reserve package name

python-tia

[image: _images/python-tia.svg]GitHub license [https://github.com/fkromer/python-tia/blob/master/LICENSE]
[image: _images/pip.svg]Read the Docs [https://python-tia.readthedocs.io]
[image: _images/Donate-PayPal-green.svg]Donate [https://www.paypal.me/fkromer]

The command line application tia is a generic and flexible Test Impact Analysis (TIA) preprocessor for test tools.

Reasons for python-tia

	Triggering test execution in a Test Driven Development (TDD) manner on a developer machine may be annoying because tests need to be selected explicitly for execution. “As a developer I want to call tia that the recently changed tests on my dev machine are selected for execution.”

	Test execution time on a developer machine may be that long that it prevents from adapting an effective Test Driven Development (TDD) workflow. In the worst case executing tests becomes that annoying that it is skipped completely. “As a developer I want to call tia that the minimal possible sub-set of tests is selected for execution.”

	It may not be obvious what tests need to be executed after production code was changed. As a developer I want to call tia that the tests are selected for execution which corresponds to the recently changed production code on my dev machine.

	Running analyzers in a Test Driven Development (TDD) manner may be annoying because it’s not always obvious if they need to be run at all and in case they should over which files they should run. As a developer I want to call tia that the recently changed production code on my dev machine is selected for analyzation if required.

	Running analyzers over more files than required is (usually not critical but anyway) a waste of time . As a developer I want to call tia that the minimal possible sub-set of files is considered for analysis.

Features

	semantic mapping: tia let’s you semantically map directories and files to test and analysis tools in a semantic map.

	determination of file changes: tia determines changes to the production and test code of Python projects which is under version control.

	coverage mapping: tia traces which production code is executed by every single test via dynamic analysis and keeps track of it in a coverage map (production code vs. test code).

	impact mapping: tia determines for every production code change which tests need to be executed to catch possible regressions and keeps track of it in a impact map.

Design

Git interaction

	git (ducumentation [https://git-scm.com/doc] / source code [https://github.com/git/git])

	Dulwich (ducumentation [https://www.dulwich.io/] / source code [https://github.com/dulwich/dulwich])

“Dulwich is a Python implementation of the Git file formats and protocols, which does not depend on Git itself.”

	GitPython (documentation [http://gitpython.readthedocs.io/en/stable/] / source code [https://github.com/gitpython-developers/GitPython])

“GitPython is a python library used to interact with git repositories, high-level like git-porcelain, or low-level like git-plumbing.”

Semantic diff

No tools known which could be used for semantic diffs.

Alternatives evaluated but not suitable:

	Semantic Diff [https://github.com/hoelzro/semantic-diff] is highly experimental and doesn’t support Python 3.

	SemanticMerge [https://www.semanticmerge.com/] is commercial and doesn’t support Python 3.

	Smart Differencer [http://www.semanticdesigns.com/Products/SmartDifferencer/index.html] is commercial and
doesn’t support Python 3 (only Python 2.6).

Other Python packages implementing TIA

Right now there is a proof of concept using scripts and 2 Python packages which implement TIA. Each solution is implementing
TIA functionality to some degree and not generically (both packages depend on pytest).

“testimpact” script (no package, proof of concept scripts)

Sources: github.com/paul-hammant/samplemod [https://github.com/paul-hammant/samplemod]

Paul Hammant presented a proof of concept in his blog “Reducing Test Times by Only Running Impacted Tests - Python Edition” [https://paulhammant.com/2015/01/18/reducing-test-times-by-only-running-impacted-tests-python-edition/]. The script testimpact.sh [https://github.com/paul-hammant/samplemod/blob/master/testimpact.sh] determines the test files using ack [https://github.com/paul-hammant/samplemod/blob/master/testimpact.sh#L7], runs every test with nosetest [https://github.com/paul-hammant/samplemod/blob/master/testimpact.sh#L15], determines which production code is executed by each test and writes the “coverage map” into meta data directory meta/ (directory meta/tests [https://github.com/paul-hammant/samplemod/tree/master/meta/tests] and meta/tests2 [https://github.com/paul-hammant/samplemod/tree/master/meta/tests2]). The resulting “impact map” (production code vs. test code which executes the production code) ends up in meta/impact-map.txt [https://github.com/paul-hammant/samplemod/blob/master/meta/impact-map.txt].

pytest-picked

Sources: github.com/anapaulagomes/pytest-picked [https://github.com/anapaulagomes/pytest-picked]

Package: pypi.org/pytest-picked [https://pypi.org/project/pytest-picked/]

pytest-picked is a pytest plugin which makes use of git. It does not create a coverage map and
impact map. Instead it uses git status --short (command line git wrapped with subprocess) to
determine test files and folders which have been changed locally.

pytest-knows

Sources: github.com/mapix/ptknows [https://github.com/mapix/ptknows]

Package: pypi/pytest-knows [https://pypi.org/project/pytest-knows/]

pytest-knows is a pytest plugin which makes use of trace [https://docs.python.org/2/library/trace.html] and stat.ST_MTIME [https://docs.python.org/2/library/stat.html#stat.ST_MTIME] (time of last file modification).
During setup of pytest via the pytest hook pytest_configure() [https://github.com/mapix/ptknows/blob/master/ptknows.py#L47] it opens an UNIX database via the Python 2 dbm interface [https://docs.python.org/2/library/dbm.html] (in Python 3 the module has been renamed to dbm.ndbm [https://docs.python.org/3.7/library/dbm.html#module-dbm.ndbm]).
Before pytest runs a single test pytest-knows hooks into there via the pytest hook pytest_runtest_call() [https://github.com/mapix/ptknows/blob/master/ptknows.py#L55]).
It is checked if dependency info for this test (mapping of test to executed production code files) has been stored into the database before.
If there is info available and the last modification time of the production code file corresponding to the test has not changed the test is skipped.
In case there is no dependency info or the last modification time of one of the tests associated production code files has changed the test is executed.
During test execution trace info is gathered and the dependency information for the test (mapping of test to executed production code files) stored in the database.
After execution the databaes is closed via pytest hook pytest_unconfigure() [https://github.com/mapix/ptknows/blob/master/ptknows.py#L51].

nose-knows

Sources: github.com/eventbrite/nose-knows [https://github.com/eventbrite/nose-knows]

Package: pypi/nose-knows [https://pypi.org/project/nose-knows/]

nose-knows is a nose plugin with experimental support for pytest.
The coverage map (.knows file) maps production code on the file level vs. tests (created in “output mode”, cmd line option --knows-out).
In Knows.begin() [https://github.com/eventbrite/nose-knows/blob/master/src/knows/base.py#L58] it makes use of threading.settrace(self.tracer)
with the tracer function Knows.tracer() [https://github.com/eventbrite/nose-knows/blob/master/src/knows/base.py#L63] to trace the production code executed during tests. begin() is integrated into the test runner processing procedure
(nose: KnowsNosePlugin.begin() [https://github.com/eventbrite/nose-knows/blob/master/src/knows/nose_plugin.py#L105], pytest: pytest_sessionstart() [https://github.com/eventbrite/nose-knows/blob/master/src/knows/pytest_plugin.py#L94]). The trace context for particular tests is determined via Knows.start_test() [https://github.com/eventbrite/nose-knows/blob/master/src/knows/base.py#L84] which is called in the plugins via the corresponding test runner hooks (nose: KnowsNosePlugin.startTest() [https://github.com/eventbrite/nose-knows/blob/master/src/knows/nose_plugin.py#L108], pytest: pytest_runtest_protocol() [https://github.com/eventbrite/nose-knows/blob/a647cc1f82984522f728ccc83145c774f4756197/src/knows/pytest_plugin.py#L99]).
In “input mode” the coverage map (.knows file) is used to generate the impact map dynamically Knows.get_tests_to_run() [https://github.com/eventbrite/nose-knows/blob/3ac3cfc81c7d3bc7beaf2b533ab37a0bbf132779/src/knows/base.py#L26] for a production code file and to selectivelly run tests for it.

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

